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NOMENCLATURE 

R,: 
T, 
t, 
n. r, 
fJ, 
x. 4’3 

constants ; 
zeroth and first order functions, equation (7); 
Prandtl number; 
Reynolds number; 
dimensionless temperature ; 
temperature; 
velocity components in X, y-directions; 
free-stream velocity ; 
Cartesian co-ordinates. 

Greek symbols 

parabolic co-ordinates ; 
zeroth and first order temperature functions, 
equation (8); 
kinematic viscosity ; 
non-dimensional stream-function. 

Subscripts 

w, denotes conditions at the wall ; 

X’ 
denotes conditions in the free-stream; 
denotes local value of 0 at the wall; 

o,~,uu,nrf, denotes partial derivatives with respect to 6, q, 
W, and qn, respectively. 

1. INTRODUCTION 

A VERY interesting heat transfer situation occurs for flow over 
a semi-infinite flat plate, which is maintained at a temperature 
that is inversely proportional to the square root of the 
distance (x) from the leading edge (x = y = 0). In such 
situation, the local heat transfer coefficient is found to be zero 
[I, 21 for x > 0 though the wall temperature (t,) is different 
from the free-stream temperature (t il ). The fluid temperature 
changes during the flow process though there is no local heat 
transfer at the plate surface for x > 0. However, these analyses 
[l, 21 were based on the boundary-layer approximation, 
which is valid in the far downstream direction. As such, the 
heat transfer process needs to be re-examined for small x 
defining upstream flow. 

The aim of this paper is to report on the role of plate length 
(x) in the heat transfer process for the flow geometry 
mentioned above. Parabolic co-ordinates, which are optimal 
for a flat plate [3], have been used to study the forced 
convection flow using Navier-Stokes equations where as in 
ref. [2] the combined effect of both forced and free 

convection was studied under the boundary-layer 
approximation. 

2. GOVERNING EQUATIONS 

Let a and t) denote the twovelocity components in the x and 
y directions, respectively. The local temperature is denoted by 
t and the uniform free-stream velocity parallel to x is denoted 
by Cl. The non-dimensional parabolic co-ordinates (u, n) are 
defined such that 

x + iy = ~(0 + irf)‘/2U (1) 

x = y(“z - $)/2U 

y = j’Utf/U (2) 

where 7 is the kinematic viscosity, n is retained as positive so 
that positive 0 represents the positive y-space of interest to us. 

For steady, incompressible, laminar flow over a semi- 
infinite flat plate the 2-dim. vorticity equation and the energy 
equation in parabolic co-ordinates are 

P,, + P,,, + cp” P,, - ‘p,P, = 0, (3) 

r,, + r,,,) + Pr[cp,r, - cp,,t,l = 0. (4) 

Here suffixes 0 and n denote derivative with respect to 0 and 7, 
respectively. P is given by P = (cp,, + q,,,)/(u’ + qz) and cp is 
the non-dimensional stream function. Pr denotes the Prandtl 
number. In this analysis it is assumed that rW c( x-r”, i.e. the 
plate temperature (t,) is inversely proportional to the square 
root of the distance from the leading edge. The non- 
dimensional temperature T(cr, q) is defined by T = 
(r - t, )/(I, - t , ) = (t - t , )/Ax-“‘, where A is constant. 
Since the wall is defined by r) = 0, we have (t - I, ) = ET/u, 
where B is another constant. The energy equation (4) becomes 

(T/u),, + (T/o),,,, + PrCq,(Tlc), - cp,,(Tl&] = 0. (5) 

The boundary conditions are 

~(0) = q,,(O) = 0; T(0) = 1; 

q(z)-a~; T(r_)+O. (6) 

The dimensionless stream function (cp) and the temperature 
(7) are expanded [4, 51 about u,, = (2R,)“‘, where R, (= 
U.x/y) is the local Reynolds number, on the plate surface as 

cp = ~II-(rl) + (0 - ~0lf,(~).““1 (7) 

T = [8(q) + (a - u,)B,(v).....] (8) 
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FIG. 1. Effect of local Reynolds number on the non-dimensional wall temperature gradient. 

which are dictated by the boundary conditions. Substituting 
equations (7 and 8) in equations (3-5) and retaining the first 
term only, we obtain 

x [(0$ - r/‘)f’ - 2fl = 0, (9) 

6” + [2(&$-j + Pr[f‘B’ +f’0] = 0. (10) 

The corresponding boundary conditions are 

f(0) =f’(O); B(0) = 1; 

f(x)=q; f(z) --) l;B(xJ)-t 0. (11) 

Equations (9 and 10) reduce to the boundary-iayer equa- 
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FIG. 2. Non-dimensional temperature profiles for various 
values of the local Reynoids number (X,). 

tions of ref. [2] (differing by a factor of 2 in the highest order 
derivative due to scaling) as o0 --+ XI. It may be noted that 
leading edge (uO = 0) situation can be described by the 
vorticity equation (9) but the energy equation (10) reduces to 
a singular perturbation problem as go + 0 [6]. Hence, we 
have considered u0 > 0. Equation (10) after integration yields 

8’(O) = 
s 

I’ (20/u,)dtj. (12) 
0 

Here it is assumed that t?’ (x) = 0, which is, of course, 
obvious. Equation (12) shows that the local heat transfer 
coefficient is not independent of the plate length (for given U 
and y) and becomes independent of the piate length as CT” -+ 
r~, representing the result of ref. [t] and the forced convection 
result of ref. [Z]. In other words, in the far downstream region 
the local heat transfer coefficient is zero. Also, equation (12) 
shows that in the upstream region (for low and moderately 
large Reynolds numbers) heat is transferred from the fluid to 
the wall and not from the wall to the fluid. 

3. RESULTS AND DISCUSSION 

Equations (9~(11) were solved numerically for Fr = 0.7 and 
for different Reynolds numbers. Results, shown in Figs. 1 and 
2, are approximate due to series truncation. Results of Davis 
[4] show that higher truncation will increase the accuracy. 
The positive local heat transfer coefficient [e’(O)] profile (Fig. 
1) approaches an asymptotic value at R, N 3.2. As such, the 
solution of equation (11) for R, < 3.2 needs separate 
investigation, which is being carried out. Q’(O) approaches the 
value obtained under the boundary-Iayer approximation as 
crO + Y,, i.e. B’(O) + 0 as R, + a. Temperature profiles (Fig. 
2) exhibit large overshoots for low Reynolds numbers and 
approach the profile shape for which 8’(O) = 0 with 
increasing Reynolds number (R, = 400). The entire heat 
transfer to the fluid occurs at the singular point (x = 0) and 
then redistribution takes place during the flow development 
over the plate. During this process, the wall is active. After the 
redistribution is complete, the temperature distribution be- 
comes that of ref. [l] or ref. [2] for which the wall is inactive. 

4. CONCLUSIONS 

From the above discussion we can conclude that the 
observation [l, 21 that the local heat transfer coefficient is 
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independent of the plate length is true in the far downstream 
region. In the upstream region (R, > 3.2) the local heat 
transfer coefficient depends on the plate length. 
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